झेड-परिवर्तन
झेड-परिवर्तन
गणित आणि सिग्नल प्रोसेसिंगमध्ये, झेड-ट्रान्सफॉर्म एका स्वतंत्र-वेळ सिग्नलला रूपांतरित करते, जो वास्तविक किंवा जटिल संख्यांचा एक क्रम आहे, जटिल वारंवारता-डोमेन ( झेड-डोमेन किंवा झेड-प्लेन ) प्रस्तुतीकरणात. [१] [२]
हे लाप्लेस ट्रान्सफॉर्म (एस-डोमेन) च्या स्वतंत्र-वेळ समतुल्य मानले जाऊ शकते. [३] ही समानता टाइम-स्केल कॅल्क्युलसच्या सिद्धांतामध्ये शोधली जाते.
लाप्लेस एस-डोमेनच्या काल्पनिक रेषेवर सतत-वेळ फूरियर ट्रान्सफॉर्मचे मूल्यमापन केले जाते, तर झेड-डोमेनच्या युनिट वर्तुळावर स्वतंत्र-टाइम फूरियर ट्रान्सफॉर्मचे मूल्यांकन केले जाते. अंदाजे s-डोमेनचे डावे अर्ध-विमान काय आहे, ते आता जटिल युनिट वर्तुळाच्या आतील भाग आहे; युनिट वर्तुळाच्या बाहेर झेड-डोमेन काय आहे, साधारणपणे एस-डोमेनच्या उजव्या अर्ध्या विमानाशी संबंधित आहे.
डिजिटल फिल्टर डिझाइन करण्याचे एक साधन म्हणजे अॅनालॉग डिझाईन्स घेणे, त्यांना द्विरेखीय ट्रान्सफॉर्मच्या अधीन करणे जे त्यांना एस-डोमेनपासून झेड-डोमेनवर मॅप करते आणि नंतर तपासणी, हाताळणी किंवा संख्यात्मक अंदाजे करून डिजिटल फिल्टर तयार करते. अशा पद्धती जटिल एकतेच्या परिसरात, म्हणजे कमी फ्रिक्वेन्सीशिवाय अचूक नसतात.
आलेख काढणे
आलेख काढणे
इतिहास
आता झेड-ट्रान्सफॉर्म म्हणून ओळखली जाणारी मूळ कल्पना लॅप्लेसला माहीत होती, आणि रडारसह वापरल्या जाणाऱ्या सॅम्पल-डेटा कंट्रोल सिस्टीमवर उपचार करण्याचा एक मार्ग म्हणून डब्ल्यू. हुरेविक्झ [४] [५] आणि इतरांनी १९४७ मध्ये ती पुन्हा सादर केली. हे रेखीय, स्थिर-गुणांक फरक समीकरणे सोडवण्याचा एक मार्ग दाखवतो. नंतर १९५२ मध्ये कोलंबिया विद्यापीठातील सॅम्पल-डेटा कंट्रोल ग्रुपमध्ये रॅगझिनी आणि झादेह यांनी "द झेड-ट्रान्सफॉर्म" असे नाव दिले. [६] [७]
सुधारित किंवा प्रगत झेड-ट्रान्सफॉर्म नंतर EI ज्युरीने विकसित आणि लोकप्रिय केले. [८] [९]
झेड-ट्रान्सफॉर्ममध्ये समाविष्ट असलेली कल्पना गणितीय साहित्यात फंक्शन्स निर्माण करण्याची पद्धत म्हणून देखील ओळखली जाते जी १७३० च्या सुरुवातीस शोधली जाऊ शकते जेव्हा डे मोइव्रेने संभाव्यता सिद्धांताच्या संयोगाने ती सादर केली होती. [१०]गणितीय दृष्टिकोनातून झेड-ट्रान्सफॉर्मला लॉरेंट मालिका म्हणून देखील पाहिले जाऊ शकते जेथे एक विश्लेषणात्मक कार्याचा (लॉरेंट) विस्तार म्हणून विचाराधीन संख्यांचा क्रम पाहतो.
व्याख्या
झेड-ट्रान्सफॉर्मची व्याख्या एकतर एकतर्फी किंवा द्वि-पक्षीय रूपांतर म्हणून केली जाऊ शकते. (जसे आपल्याकडे एकतर्फी लॅप्लेस ट्रान्सफॉर्म आहे आणि दोन बाजू असलेला लॅपेस ट्रान्सफॉर्म आहे.) [११]
द्विपक्षीय झेड-परिवर्तन
एका वेगळ्या-वेळ सिग्नलचे द्विपक्षीय किंवा द्विपक्षीय झेड-परिवर्तन औपचारिक शक्ती मालिका आहे म्हणून परिभाषित केले आहे
कुठे पूर्णांक आहे आणि सर्वसाधारणपणे, एक जटिल संख्या आहे:
कुठे चे परिमाण आहे , काल्पनिक एकक आहे, आणि रेडियनमध्ये जटिल युक्तिवाद आहे (ज्याला कोन किंवा फेज देखील म्हणले जाते).
एकतर्फी झेड-परिवर्तन
वैकल्पिकरित्या, प्रकरणांमध्ये जेथे साठी परिभाषित केले आहे , एकतर्फी किंवा एकतर्फी झेड-परिवर्तन म्हणून परिभाषित केले आहे
सिग्नल प्रोसेसिंगमध्ये, ही व्याख्या स्वतंत्र-वेळ कारण प्रणालीच्या युनिट आवेग प्रतिसादाच्या झेड-ट्रान्सफॉर्मचे मूल्यांकन करण्यासाठी वापरली जाऊ शकते.
एकतर्फी झेड-ट्रान्सफॉर्मचे महत्त्वाचे उदाहरण म्हणजे संभाव्यता निर्माण करणारे कार्य, जेथे घटक एक स्वतंत्र यादृच्छिक चल मूल्य घेते ही संभाव्यता आहे , आणि कार्य सहसा असे लिहिले जाते च्या दृष्टीने . Z- ट्रान्सफॉर्म्सचे गुणधर्म (खाली) संभाव्यता सिद्धांताच्या संदर्भात उपयुक्त व्याख्या आहेत.
व्यस्त Z-परिवर्तन
व्यस्त झेड-परिवर्तन आहे
जेथे C हा मूळ आणि संपूर्णपणे अभिसरण प्रदेशात (ROC) घेरणारा घड्याळाच्या उलट दिशेने बंद मार्ग आहे. आरओसी कारणकारक असेल अशा स्थितीत ( उदाहरण २ पहा), याचा अर्थ मार्ग C ने सर्व ध्रुवांना वेढले पाहिजे .
जेव्हा C हे एकक वर्तुळ असते तेव्हा या समोच्च अविभाज्यतेची एक विशेष बाब उद्भवते. जेव्हा आरओसीमध्ये युनिट सर्कल समाविष्ट असेल तेव्हा हा समोच्च वापरला जाऊ शकतो, ज्याची हमी नेहमीच दिली जाते स्थिर आहे, म्हणजे, जेव्हा सर्व ध्रुव युनिट वर्तुळाच्या आत असतात. या समोच्च सह, व्युत्क्रम झेड-ट्रान्सफॉर्म एकक वर्तुळाभोवती असलेल्या झेड-ट्रान्सफॉर्मच्या नियतकालिक मूल्यांच्या व्युत्क्रम स्वतंत्र-वेळ फूरियर ट्रान्सफॉर्म, किंवा फूरियर मालिका, सुलभ करते:
n ची मर्यादित श्रेणी आणि एकसमान अंतर असलेल्या z मूल्यांच्या मर्यादित संख्येसह झेड- ट्रान्सफॉर्मची ब्लूस्टीनच्या FFT अल्गोरिदमद्वारे कार्यक्षमतेने गणना केली जाऊ शकते. डिस्क्रिट-टाइम फूरियर ट्रान्सफॉर्म (डीटीएफटी) - डिस्क्रिट फूरियर ट्रान्सफॉर्म (डीएफटी) सह गोंधळात टाकू नये - हे एकक वर्तुळावर z ला प्रतिबंधित करून प्राप्त केलेल्या झेड-ट्रान्सफॉर्मचे एक विशेष प्रकरण आहे.
अभिसरणाचा प्रदेश
अभिसरण क्षेत्र (आर.ओ.सी) हा जटिल समतल बिंदूंचा संच आहे ज्यासाठी झेड-परिवर्तन समीकरण अभिसरण होते.
उदाहरण १ (रॉक नाही)
द्या . मध्यांतर (−∞, ∞) वर x [ n ] चा विस्तार केला तर तो होतो
बेरीज पाहता
म्हणून, ही स्थिती पूर्ण करणारी z ची कोणतीही मूल्ये नाहीत.
उदाहरण २ (कार्यकारण आरओसी)

द्या (जेथे यू हेविसाइड स्टेप फंक्शन आहे). मध्यांतर (−∞, ∞) वर x [ n ] चा विस्तार केला तर तो होतो
बेरीज पाहता
शेवटची समानता अनंत भूमितीय मालिकेतून उद्भवते आणि समानता फक्त जर |0.5 z −1 | < 1 जे | म्हणून z च्या संदर्भात पुन्हा लिहिले जाऊ शकते z | > ०.५. अशा प्रकारे, आर.ओ.सी आहे | z | > ०.५. या प्रकरणात आरओसी हे "पंच आउट" च्या उत्पत्तीवर 0.5 त्रिज्या असलेल्या डिस्कसह जटिल विमान आहे.साचा:Clear
उदाहरण ३ (अँटी कॉझल आरओसी)

द्या (जेथे यू हेविसाइड स्टेप फंक्शन आहे). मध्यांतर (−∞, ∞) वर x [ n ] चा विस्तार केल्यास ते होते
बेरीज पाहता
अनंत भौमितिक मालिका वापरून, पुन्हा, समानता फक्त जर |0.5 −1 z | < 1 जे | म्हणून z च्या संदर्भात पुन्हा लिहिले जाऊ शकते z | < ०.५. अशा प्रकारे, आर.ओ.सी आहे | z | < ०.५. या प्रकरणात आरओसी ही एक डिस्क आहे जी मूळ आणि त्रिज्या 0.5 च्या केंद्रस्थानी असते.
मागील उदाहरणापेक्षा हे उदाहरण वेगळे काय आहे ते फक्त आरओसी आहे. केवळ परिवर्तनाचा परिणाम अपुरा आहे हे दाखवण्यासाठी हे हेतुपुरस्सर आहे. साचा:Clear
उदाहरणे निष्कर्ष
उदाहरणे 2 आणि 3 स्पष्टपणे दर्शवतात की x[n] चे झेड-ट्रान्स्फॉर्म X(z) अद्वितीय आहे जेव्हा आणि फक्त आर.ओ.सी निर्दिष्ट करताना. ध्रुव-शून्य प्लॉट कार्यकारण आणि रोधक प्रकरणासाठी तयार करणे हे दर्शविते की दोन्ही प्रकरणांसाठी आरओसीमध्ये 0.5 वर असलेल्या ध्रुवचा समावेश नाही. हे एकापेक्षा जास्त ध्रुव असलेल्या प्रकरणांमध्ये विस्तारते: आर.ओ.सी मध्ये कधीही पोल नसतात.
उदाहरण २ मध्ये, कार्यकारण प्रणाली आरओसी देते ज्यामध्ये | समाविष्ट आहे z | = ∞ तर उदाहरण 3 मध्ये रोधक प्रणाली एक आरओसी देते ज्यामध्ये | समाविष्ट आहे z | = 0.

एकाधिक ध्रुव असलेल्या प्रणालींमध्ये आरओसी असणे शक्य आहे ज्यामध्ये | दोन्हीपैकी कोणतेही समाविष्ट नाही z | = ∞ किंवा | z | = 0. आरओसी गोलाकार बँड तयार करते. उदाहरणार्थ,
0.5 आणि 0.75 वर पोल आहेत. आरओसी ०.५ < | असेल z | < 0.75, ज्यामध्ये मूळ किंवा अनंताचा समावेश नाही. अशा प्रणालीला मिश्र-कारणभाव प्रणाली म्हणतात कारण त्यामध्ये कार्यकारण संज्ञा (0.5) n u [ n ] आणि एक कारक संज्ञा − (0.75) n u [ − n − 1] असते.
केवळ आरओसी जाणून घेऊन सिस्टमची स्थिरता देखील निर्धारित केली जाऊ शकते. जर आर.ओ.सी मध्ये युनिट वर्तुळ (म्हणजे, | z | = 1) असेल तर प्रणाली स्थिर आहे. वरील प्रणालींमध्ये कार्यकारण प्रणाली (उदाहरण 2) स्थिर आहे कारण | z | > ०.५ मध्ये एकक वर्तुळ आहे.
आपण असे गृहीत धरू की आपल्याला आरओसीशिवाय (म्हणजे एक अस्पष्ट x [ n ]) प्रणालीचे झेड- ट्रान्सफॉर्म प्रदान केले आहे. आम्ही एक अद्वितीय x [ n ] निर्धारित करू शकतो बशर्ते आम्हाला पुढील गोष्टींची इच्छा असेल:
- स्थिरता
- कार्यकारणभाव
स्थिरतेसाठी आरओसीमध्ये युनिट सर्कल असणे आवश्यक आहे. जर आपल्याला कार्यकारण प्रणालीची आवश्यकता असेल तर आरओसीमध्ये अनंत असणे आवश्यक आहे आणि सिस्टम कार्य उजव्या बाजूचा क्रम असेल. जर आम्हाला अँटीकॉझल सिस्टमची आवश्यकता असेल तर आरओसीमध्ये मूळ असणे आवश्यक आहे आणि सिस्टम फंक्शन एक डावी बाजू असलेला क्रम असेल. जर आपल्याला स्थिरता आणि कार्यकारणभाव दोन्हीची आवश्यकता असेल तर, सिस्टम फंक्शनचे सर्व ध्रुव युनिट वर्तुळाच्या आत असले पाहिजेत.
अद्वितीय x[n] नंतर आढळू शकते.
गुणधर्म
| वेळ डोमेन(Time Domain) | Z-डोमेन (Z-Domain) | पुरावा (Proof) | आरओसी (ROC) | |
|---|---|---|---|---|
| नोटेशन (Notation) | ||||
| रेखीयता (Linearity) | ROC 1 ∩ ROC 2 समाविष्ट आहे | |||
| वेळ विस्तार (Time Expansion) |
सह |
|||
| दशमन (Decimation) | ohio-state.edu साचा:Webarchive किंवा ee.ic.ac.uk | |||
| वेळ विलंब(Time Delay) |
सह आणि |
ROC, z = 0 जर k > 0 आणि z = ∞ k < 0 असल्यास | ||
| वेळ आगाऊ (Time advance) |
सह |
द्विपक्षीय Z-परिवर्तन:
एकतर्फी Z-परिवर्तन: [१२] |
||
| पहिला फरक मागास(First Difference Backward) |
n <0 साठी x [ n ]=0 सह |
X 1 (z) आणि z ≠ 0 च्या ROC चे छेदनबिंदू समाविष्ट आहे | ||
| प्रथम फरक पुढे (First Difference Forward) | ||||
| वेळ उलटा (Time Reversal) | ||||
| झेड-डोमेनमध्ये स्केलिंग (Scaling in z-domain) | ||||
| जटिल संयुग्मन (Complex Conjugation) | ||||
| वास्तविक भाग | ||||
| काल्पनिक भाग | ||||
| भेद (Differentiation) | आरओसी, जर तर्कसंगत आहे;
आरओसी शक्यतो सीमा वगळून, जर तर्कहीन आहे [१३] | |||
| कोन्व्होल्युशन (Convolution) | ROC 1 ∩ ROC 2 समाविष्ट आहे | |||
| परस्परसंबंध (Cross-Correlation) | च्या ROC चा छेदनबिंदू समाविष्ट आहे आणि | |||
| संचित (Accumulation) | ||||
| गुणाकार(Multiplication) | - |
पारसेवाल यांचे प्रमेय
प्रारंभिक मूल्य प्रमेय : जर x [ n ] कार्यकारणभाव असेल तर
अंतिम मूल्य प्रमेय : जर ( z −1) X ( z ) चे ध्रुव एकक वर्तुळाच्या आत असतील तर
सामान्य Z- ट्रान्सफॉर्म जोड्यांची सारणी
येथे: u[n]=1 जर n>=0, u[n]=0 जर n<0
युनिट (किंवा हेविसाइड) स्टेप फंक्शन आहे आणि
δ[n] = 1 जर n=0, नाहितर δ[n] = 0
डिस्क्रिट-टाइम युनिट इंपल्स फंक्शन आहे (सीएफ डिराक डेल्टा फंक्शन जे सतत-वेळ आवृत्ती आहे). दोन फंक्शन्स एकत्र निवडले जातात जेणेकरून युनिट स्टेप फंक्शन हे युनिट आवेग फंक्शनचे संचय (रनिंग टोटल) असेल.
| सिग्नल, | झेड-परिवर्तन, | आरओसी | |
|---|---|---|---|
| १ | १ | सर्व z | |
| 2 | |||
| 3 | |||
| 4 | |||
| ५ | |||
| 6 | |||
| ७ | |||
| 8 | |||
| ९ | |||
| 10 | |||
| 11 | |||
| 12 | |||
| 13 | |||
| 14 | |||
| १५ | |||
| 16 | |||
| १७ | , for positive integer [१३] | ||
| १८ | , for positive integer [१३] | ||
| १९ | |||
| 20 | |||
| २१ | |||
| 22 |
Relationship To Fourier Series And Fourier Transforms
एकक वर्तुळ म्हणून ओळखल्या जाणाऱ्या |z|=1 प्रदेशातील z च्या मूल्यांसाठी, आम्ही एकल, वास्तविक व्हेरिएबल, ω चे फंक्शन म्हणून परिवर्तन व्यक्त करू शक्तो आणि द्वि-पक्षीय रूपांतर फुरियर मालिकेत कमी होते:
ज्याला अनुक्रमाचे डिस्क्रिट-टाइम फूरियर ट्रान्सफॉर्म (DTFT) म्हणून देखील ओळखले जाते. हे 2π-नियतकालिक फंक्शन हे फूरियर ट्रान्सफॉर्मचे नियतकालिक योग आहे, ज्यामुळे ते मोठ्या प्रमाणावर वापरले जाणारे विश्लेषण साधन आहे.
हे समजून घेन्यासाठी कोणत्याही फंक्शनचे फूरियर ट्रान्सफॉर्म होऊ द्या ज्याचे नमुने काही अंतराने, क्रमाच्या बरोबरीचे आहेत.
नंतर क्रमाचा DTFT खालीलप्रमाणे लिहिता येईल.