लॅप्लेस परिवर्तन

testwiki कडून
imported>CommonsDelinkerद्वारा १८:२४, ५ सप्टेंबर २०२२चे आवर्तन
(फरक) ←मागील आवृत्ती | सध्याची आवृत्ती (फरक) | नविनतम आवृत्ती→ (फरक)
Jump to navigation Jump to search

गणितात, लॅपलेस ट्रान्सफॉर्म, त्याचे शोधक पियरे-सायमन लाप्लेस यांच्या नावावरून नाव दिले गेले आहे, हे एक अविभाज्य रूपांतर आहे जे वास्तविक व्हेरिएबलचे कार्य रूपांतरित करते (सामान्यतः t, वेळेच्या डोमेनमध्ये ) जटिल व्हेरिएबलच्या कार्यासाठी s (जटिल फ्रिक्वेन्सी डोमेनमध्ये, ज्याला s -domain, किंवा s-plane असेही म्हणतात). ट्रान्सफॉर्ममध्ये विज्ञान आणि अभियांत्रिकीमध्ये अनेक अनुप्रयोग आहेत कारण ते भिन्न समीकरणे सोडवण्याचे एक साधन आहे. []


विशेषतः, हे सामान्य विभेदक समीकरणांचे बीजगणितीय समीकरणांमध्ये आणि आंतरक्रियांचे गुणाकारात रूपांतर करते. [] []योग्य फंक्शन्स f साठी, लॅप्लेस ट्रान्सफॉर्म अविभाज्य आहे.

इतिहास

इतिहास

पियरे-सायमन, मार्क्विस डी लाप्लेस

लॅप्लेस ट्रान्सफॉर्मचे नाव गणितज्ञ आणि खगोलशास्त्रज्ञ पियरे-सिमोन, मार्क्विस डी लाप्लेस यांच्या नावावरून ठेवले गेले आहे, ज्यांनी संभाव्यता सिद्धांतावरील त्यांच्या कामात समान परिवर्तन वापरले. [] लॅप्लेस ने Essai philosophique sur les probabilités (1814) मध्ये जनरेटिंग फंक्शन्सच्या वापराबद्दल विस्तृतपणे लिहिले आणि परिणामी लॅप्लेस ट्रान्सफॉर्मचे अविभाज्य स्वरूप नैसर्गिकरित्या विकसित झाले. []

लॅपलेसचा जनरेटिंग फंक्शन्सचा वापर आता z-ट्रान्सफॉर्म म्हणून ओळखल्या जाणाऱ्या सारखाच होता आणि त्याने सतत व्हेरिएबल केसकडे फारसे लक्ष दिले नाही ज्याची निल्स हेन्रिक एबेल यांनी चर्चा केली होती. [] हा सिद्धांत पुढे 19व्या आणि 20व्या शतकाच्या सुरुवातीला मॅथियास लेर्च, [] ऑलिव्हर हेविसाइड, [] आणि थॉमस ब्रॉमविच यांनी विकसित केला होता. []

ट्रान्सफॉर्मचा सध्याचा व्यापक वापर (प्रामुख्याने अभियांत्रिकीमध्ये) दुसऱ्या महायुद्धादरम्यान आणि त्यानंतर लगेचच झाला, [१०] पूर्वीच्या हेविसाइड ऑपरेशनल कॅल्क्युलसची जागा घेतली. लॅप्लेस ट्रान्सफॉर्मच्या फायद्यांवर गुस्ताव डोएत्श यांनी जोर दिला होता, [११] ज्यांना लाप्लेस ट्रान्सफॉर्म हे नाव वरवर पाहता येते.

1744 पासून, लिओनहार्ड यूलरने फॉर्मच्या अविभाज्य घटकांची तपासणी केली


भिन्न समीकरणांचे निराकरण म्हणून, परंतु या प्रकरणाचा फार दूर पाठपुरावा केला नाही. [१२] जोसेफ लुई लॅग्रेंज हे युलरचे प्रशंसक होते आणि त्यांनी संभाव्य घनता कार्ये एकत्रित करण्याच्या कामात, फॉर्मच्या अभिव्यक्तींचा शोध घेतला.


ज्याचा काही आधुनिक इतिहासकारांनी आधुनिक लॅप्लेस ट्रान्सफॉर्म सिद्धांतामध्ये अर्थ लावला आहे. [१३] [१४]

1782 मध्ये या प्रकारच्या इंटिग्रल्सने प्रथम लॅपेसचे लक्ष वेधून घेतले असे दिसते, जेथे तो समीकरणांचे निराकरण म्हणून अविभाज्यांचा वापर करण्यासाठी यूलरच्या आत्म्याचे अनुसरण करीत होता. [१५] तथापि, 1785 मध्ये, लॅपलेसने गंभीर पाऊल पुढे टाकले जेव्हा, केवळ अविभाज्य स्वरूपात उपाय शोधण्याऐवजी, त्याने नंतर लोकप्रिय होण्याच्या अर्थाने परिवर्तन लागू करण्यास सुरुवात केली. त्याने फॉर्मचा अविभाज्य वापर केला

मेलिन ट्रान्सफॉर्म सारखे, संपूर्ण फरक समीकरणाचे रूपांतर करण्यासाठी, बदललेल्या समीकरणाचे निराकरण शोधण्यासाठी. त्यानंतर त्याने त्याच प्रकारे लॅप्लेस ट्रान्सफॉर्म लागू केले आणि त्याच्या संभाव्य सामर्थ्याचे कौतुक करण्यास सुरुवात करून त्याचे काही गुणधर्म मिळवण्यास सुरुवात केली. [१६]

लॅप्लेसने हे देखील ओळखले की जोसेफ फूरियरची प्रसरण समीकरण सोडवण्यासाठी फोरियर मालिकेची पद्धत केवळ अवकाशाच्या मर्यादित क्षेत्रासाठी लागू होऊ शकते, कारण ती निराकरणे नियतकालिक होती. 1809 मध्ये, लॅप्लेसने अंतराळात अनिश्चित काळासाठी विखुरलेले उपाय शोधण्यासाठी त्याचे परिवर्तन लागू केले.